

H→WW search and WW Cross Section Measurement with ATLAS

John Alison

University of Pennsylvania

on behalf of the ATLAS Collaboration.

Introduction

Projects on ATLAS

Basic Tracking / Commissioning with Cosmic-Rays

TRT Tracking Performance

Inner Detector Alignment (TRT)

Electron Identification

Designing HLT Trigger / Offline Electron Definitions

Electron Efficiency

Multivariate Electron Identification

Physics on ATLAS

W/Z Cross section

WW Cross section

Search for Hww

W+jet Background

Physics Goals

Motivation is Higgs.

Why $H \rightarrow WW$?

Important over broad mass range.

Challenging, but important, at low mass.

Hint of signal there from ZZ and gamma-gamma at 125 GeV.

Large branching fraction for WW

Why WW?

Important to understand WW and its backgrounds for Hww.

Why leptons?

Rare in proton collisions compared to jets.

Provide trigger & well-reconstructed.

Introduction/Motivation

Leptons at ATLAS

- Electrons.

WW Cross Section / H→WW Search.

- Fake Leptons.

Results.

Higgs Physics

Standard Model

Remarkably Accurate Description Data. One Remaining Piece: Higgs Boson. Data predict m(H) below ~200 GeV

Best Fit for Higgs Mass

Theory vs Experiment

Searching for the Higgs

H→WW→lvlv

Strongest sensitivity over broad range of m(H)
Critical in the region between LEP and SM EWK exclusion

H-WW-lvlv Results

- Hww has strongest sensitivity at 125.
- Big piece of potential discovery.
- If found, will provide best cross section measurement

Electrons in ATLAS

An Electron ATLAS

Electron Candidates in ATLAS

Electron Identification

Electrons in ATLAS

Operating Points:

"Loose"

- Shower shapes 2nd sampling
- Hadronic Leakage.

"Medium"

- All Loose requirements
- Track quality
- Shower shapes in 1st sampling.

"Tight"

- All Medium requirements
- Track Cluster Matching.
- Transition Radiation.
- Conversion Rejection.

Isolation not explicitly included in operating points, Often included in electron definition used in Analysis.

After Loose

Shower Shape Mis-modeling

Challenge with the Electron Identification.

- Electron ID criteria (including that used in trigger) based on MC expectation.
- Had to be re-optimized using more realistic shower shapes.
- **Problem:** Became critical before collected enough W/Z's. Use Corrected MC.
- Efficiency Measurements couldn't rely on the simulation.

Shower Shape Mis-modeling

Challenge with the Electron Identification.

- Electron ID criteria (including that used in trigger) based on MC expectation.
- Had to be re-optimized using more realistic shower shapes.
- **Problem:** Became critical before collected enough W/Z's. Use Corrected MC.
- Efficiency Measurements couldn't rely on the simulation.

Due primarily to approximations made in the calorimeter geometry description.

Absorber Material: Average vs Detailed description

Muons in ATLAS

Muons in ATLAS

Identified as Tracks in the Muon Spectrometer.

Essentially all reconstructed muons are from muons.

 π/K decays / semi-leptonic heavy flavor decays / EWK bosons

Inclusive muon cross section

Heavy Flavor decays dominate above 15 GeV.

Isolation Energy / Displacement from Collision point, means of suppression

Physics with Leptons

Once you have a way of identifying leptons, two key issues.

Efficiency

How often are "True" Leptons are correctly identified. Important for:

- Correcting predictions from Simulation
- Cross section measurement / Limit Setting.

Need a known, unbiased, source of "real" leptons to measure.

(Use: Z's, J/Phi, and Ws)

Physics with Leptons

Once you have a way of identifying leptons, two key issues.

Efficiency

How often are "True" Leptons are correctly identified. Important for:

- Correcting predictions from Simulation
- Cross section measurement / Limit Setting.

Need a known, unbiased, source of "real" leptons to measure.

Mis-Identification Rate

How often things that are not "True" Leptons are Identified as Leptons.

hadrons / heavy flavor jets / photons

Mis-ID Reduces purity of sample/measurement

Can lead to biases, if not modeled correctly.

Rate is small, sensitive tails of the simulation.

Physics with Leptons

WW Cross Section

Motivation:

- Dominant Background to H→WW search
- Test EWK model, Sensitive to Triple Gauge Couplings

Signature:

- Performed Fully Leptonic Decays.
- 2 Opposite-Sign Leptons (e,μ)
- Large Missing Energy

$$\sigma_{WW} = \frac{N - N_{Bkg}}{\epsilon \times A \times L}$$

WW Cross Section

Backgrounds:

Drell-Yan: (lepton pair + 'fake' MeT)

- Require Large Missing Energy
- Reject events consistent w/Z mass

Top: (WW produced w/2 b-jets)

- Jet Veto

W+Jets: (lepton w/MeT + 'fake' lepton)

- Isolation / lepton Identification

Other Diboson: (WZ, ZZ, Wγ)

- remove events w/ > 2 leptons.

Drell-Yan

Backgrounds:

Drell-Yan: (lepton pair + 'fake' MeT)

- Require Large Missing Energy
- Reject events consistent w/Z mass

Top: (WW produced w/2 b-jets)

- Jet Veto

W+Jets: (lepton w/MeT + 'fake' lepton)

- Isolation / lepton Identification

Other Diboson: (WZ, ZZ, Wy)

- remove events w/ > 2 leptons.

- Well modeled by MC
- Can be corrected to Data.

Backgrounds:

Drell-Yan: (lepton pair + 'fake' MeT)

- Require Large Missing Energy
- Reject events consistent w/Z mass

Top: (WW produced w/2 b-jets)

- Jet Veto

W+Jets: (lepton w/MeT + 'fake' lepton)

- Isolation / lepton Identification

Other Diboson: (WZ, ZZ, Wγ)

- remove events w/ > 2 leptons.

W+Jet Background

- Small, but not suppressed w/ Event Selection
- Difficult to model in MC
- Important at Low Pt.

Backgrounds:

Drell-Yan: (lepton pair + 'fake' MeT)

- Require Large Missing Energy
- Reject events consistent w/Z mass

Top: (WW produced w/2 b-jets)

- Jet Veto

W+Jets: (lepton w/MeT + 'fake' lepton)

- Isolation / lepton Identification

Other Diboson: (WZ, ZZ, Wy)

- remove events w/ > 2 leptons.

w/ Event Selection

Searching for H→WW→lvlv

Separating out the H→WW

Event Selection same as for WW Cross Section.

Slightly Looser MeT cuts, add PTII

(Also includes 1-jet bin, see backup)

Dominated by SM WW.

Additional cuts to suppress SM WW.

Exploit spin-0 nature of Higgs. Optimized in 3 bins of m(H)

Background Estimation

Drell-Yan Background

Background from DY if "fake" MeT

Observed momentum imbalance that is not due to the presence of neutrinos.

Causes of fake MeT not necessarily expected to be reproduced by MC.

Use Data Events in the Z peak:

Quantify modeling of MeT in DY Events with:

NData - NMC

 $S(E_T^{miss,Rel}) = \frac{N_{Data} - N_{MC}}{N_{DY}}$

Drell-Yan Background

Background from DY if "fake" MeT

Observed momentum imbalance that is not due to the presence of neutrinos.

Causes of fake MeT not necessarily expected to be reproduced by MC.

Use Data Events in the Z peak:

Quantify modeling of MeT in DY Events with: $N_{Data} - N_{MC}$

 $S(E_T^{miss,Rel}) = \frac{N_{Data} - N_{MC}}{N_{DY}}$

Measurement:

Channel	S	- Given Data/MC consistency
ee	0.06 ± 0.08	do not correct prediction.
mm	0.05 ± 0.10	- S to assign systematic.

Top Background

Background from Top from lost Jets

Use Top control region in data

$$N_{\text{Top}}^{\text{Bkg}}(0\text{-jet}) = N_{\text{Top}}^{\text{Data-CR}} \times \frac{N_{\text{Top}}^{\text{MC}}(0\text{-jet})}{N_{\text{Top}}^{\text{MC-CR}}}$$

Top Background

Background from Top from lost Jets

Use Top control region in data

$$N_{\text{Top}}^{\text{Bkg}}(0\text{-jet}) = N_{\text{Top}}^{\text{Data-CR}} \times \frac{N_{\text{Top}}^{\text{MC}}(0\text{-jet})}{N_{\text{Top}}^{\text{MC-CR}}}$$

Measurement of the Top Background in agreement with MC prediction

Bkg Prediction: $58.6 \pm 2.1 \text{ (stat)} \pm 22.3 \text{ (sys)}$

MC Prediction: 56.7

Large systematic uncertainty due to Energy scale uncertainty in MC

Top Background

Background from Top from lost Jets

Use Top control region in data

$$N_{\text{Top}}^{\text{Bkg}}(0\text{-jet}) = N_{\text{Top}}^{\text{Data-CR}} \times \frac{N_{\text{Top}}^{\text{MC}}(0\text{-jet})}{N_{\text{Top}}^{\text{MC-CR}}}$$

Reduce systematics by applying SF measured in Tag sample.

$$N_{\text{Top}}^{\text{Bkg}}(0\text{-jet}) = N_{\text{Top}}^{Data} \times \text{SF} \times \frac{N_{\text{Top}}^{\text{MC}}(0\text{-jet})}{N_{\text{Top}}^{\text{MC}}}$$

SF - scale factor from tag sample

Leads to cancelation of some of the JES uncertainty in jet-veto . $\sim\!20$ % systematic vs $\sim\!40$ % without SF.

W + Jet Background.

W+jet events can give rise to background to WW.

- True lepton and real MeT from W
- Jet mis-IDed as Lepton

Large W+jet cross section gives significant contribution despite small lepton fake rate.

Cannot Rely on MC

- Simulation would have to get W+jet physics right.
- Simulation would have to get the Jet → Lepton piece right. ☐ Hadrons / Conversions/ Heavy Flavor

(Requires precise modeling of tails)

Fake Factor Method Data Driven Technique

Basic Idea.

- Select a control sample of W+jet events in data.
- Use an extrapolation factor ("fake factor") that allows us to model the W+jet background with the control sample.

Basic Idea.

- Select a control sample of W+jet events in data.
- Use an extrapolation factor ("fake factor") that allows us to model the W+jet background with the control sample.

Control Sample.

W +Jet background is same as signal, except for mis-Identified Lepton.

- Use an alternative Lepton definition, intended to:
 - enhance mis-Identification rate

"Denominators"

- suppress efficiency for True Leptons
- Apply full Signal Selection, treating the Denm. as a Lepton

Basic Idea.

- Select a control sample of W+jet events in data.
- Use an extrapolation factor ("fake factor") that allows us to model the W+jet background with the control sample.

Extrapolation Factor.

Relates Control Sample to W+Jet background in signal region.

- Relates mis-ID rate of the "Denominators" identification criteria to the mis-ID rate of the Lepton identification criteria
- Property Local to mis-ID object. Measure in di-jet sample.

Use

To model

From

Other good reasons not to use reconstructed Jets for extrapolation. See Details in back-up

Measuring Extrapolation Factor

Extrapolation Factor (f) can be measured in a data using a sample with no True Leptons.

All identified Leptons and Denm. in this sample are due to mis-identification.

Ratio of identified Leptons to Denominators measures f

Measuring Extrapolation Factor

Extrapolation Factor (f) can be measured in a data using a sample with no True Leptons.

All identified Leptons and Denm. in this sample are due to mis-identification.

Ratio of identified Leptons to Denominators measures f

Jet Sample:

- *Unbiased* sample of reconstructed electrons/muons. Unbiased with respect to Lepton or Denm. Defintion
- Trigger on lepton ("etcut" triggers) or away side Jet.
- Veto W and Z candidates. (small m_T and m_H away from Z)
- Residual ElectroWeak correction subtracted using MC.

Measuring Extrapolation Factor

Lepton Definition

Denominator Definition

Electrons:

Reconstructed Electron Pass Tight + Isolation.

Muons:

Reconstructed Muon Tight D0/Z0 + Isolation Reconstructed Electron Fail Medium

Reconstructed Muon Loose D0/Z0 + Interm. Isolation

Extrapolation Factor Systematics

The challenging part of measuring f.

Assumption:

Measure f in di-jet sample and assume it applies to Control Region

MC-Driven

Closure Test using W+jet and di-jet MC. (MC statistics is a limitation.)

Data-Driven

Measure variation in f with varying jet sample:

- Varying P_T of "faking" jet by Varying away side jet P_T.
- Varying composition
 - g+jet (Away side g, enhances near side q content)
- Z+jet sample. (Jet kinematics/composition similar to W+j)

Extrapolation Factor Systematics

Putting it all together

$$N_{\rm Bkg}^{\rm W+Jet} = f \times N_{\rm (Lepton+Denm)}^{\rm Observed\ Lepton-Denm.}$$

Measured in a di-jet sample

- 1) Define Denominator Definition
- 2) Measure f and its uncertainty in di-jet control sample
- 3) Select (Lepton-Denm.) pairs passing the Event selection
- 4) Subtract non-W+jet contribution to (Lep-Denm) pairs, with MC
- 5) Scale by f to predict W+jet event yields / kinematics.

The Heavy Flavor Complication

Several Sources of "fake" electrons

- Light-Flavor or gluon jets (LF) hadrons/conversions mis-IDed.
- Heavy Flavor jets (HF) semi-leptonic decays

The Heavy Flavor Complication

Several Sources of "fake" electrons

- Light-Flavor or gluon jets (LF) hadrons/conversions mis-IDed.
- Heavy Flavor jets (HF) semi-leptonic decays

Fake Factor can depend on source.

- heavy flavor significantly larger f than light flavor /gluon.

The Heavy Flavor Complication

Several Sources of "fake" electrons

- Light-Flavor or gluon jets (LF) hadrons/conversions mis-IDed.
- Heavy Flavor jets (HF) semi-leptonic decays

Fake Factor can depend on source.

- heavy flavor significantly larger f than light flavor /gluon.

$$N_{\rm Bkg}^{\rm W+Jet} = f \times N_{\rm (Lepton+Denm)}$$

Differences in heavy-flavor composition in sample used to measure f and in $N_{\text{(Lepton+Denm)}}$ will bias background prediction

LF and HF Control Regions

<u>Light-Flavor Denominator:</u>

- enriched in light-flavor
- disjoint from signal region

Heavy-Flavor Denominator:

- enriched in heavy-flavor
- disjoint from signal region

LF and HF Control Regions

<u>Light-Flavor Denominator:</u>

- enriched in light-flavor
- disjoint from signal region

Fail Identification Pass Isolation

Heavy-Flavor Denominator:

- enriched in heavy-flavor
- disjoint from signal region

Pass Identification Fail Isolation

LF and HF Control Regions

<u>Light-Flavor Denominator:</u>

- enriched in light-flavor
- disjoint from signal region

Fail Identification Pass Isolation

Heavy-Flavor Denominator:

- enriched in heavy-flavor
- disjoint from signal region

Pass Identification Fail Isolation

Light-Flavor enriched sample
di-jet sample with opposite b-veto
Heavy-Flavor enriched sample
di-jet sample with opposite side b-tag

If we had,

$$f_{
m LF} = rac{N_{
m Lepton-LF}}{N_{
m Denm-LF}} \quad ext{and} \quad f_{
m HF} = rac{N_{
m Lepton-HF}}{N_{
m Denm-HF}}$$

If we had,

Numerators *from* LF

$$f_{
m LF} = rac{N_{
m Lepton-LF}}{N_{
m Denm-LF}}$$

and

$$f_{\mathrm{HF}} = \frac{N_{\mathrm{Lepton-HF}}}{N_{\mathrm{Denm-HF}}}$$

If we had,

$$f_{
m LF} = rac{N_{
m Lepton-LF}}{N_{
m Denm-LF}}$$
 and $f_{
m HF} = rac{N_{
m Lepton-HF}}{N_{
m Denm-HF}}$

LF-enriched

definition

HF-enriched denominator definition

If we had,

$$f_{
m LF} = rac{N_{
m Lepton-LF}}{N_{
m Denm-LF}} \quad ext{and} \quad f_{
m HF} = rac{N_{
m Lepton-HF}}{N_{
m Denm-HF}}$$

The W+Jet Bkg could be calculated as:

$$N_{\rm Bkg}^{\rm W+Jet} = f_{\rm LF} \times N_{\rm (Lepton+Denm-LF)} + f_{\rm HF} \times N_{\rm (Lepton+Denm-HF)}$$

If we had,

$$f_{\mathrm{LF}} = \frac{N_{\mathrm{Lepton-LF}}}{N_{\mathrm{Denm-LF}}}$$

and
$$f_{
m HF} = rac{N_{
m Lepton-HF}}{N_{
m Denm-HF}}$$

The W+Jet Bkg could be calculated as:

$$N_{\rm Bkg}^{\rm W+Jet} = f_{\rm LF} \times N_{\rm (Lepton+Denm-LF)} + f_{\rm HF} \times N_{\rm (Lepton+Denm-HF)}$$

W+jet Bkg from Light Flavor

W+jet Bkg from Heavy Flavor

Extracting flf and fhf

$$f_{
m LF} = rac{N_{
m Lepton-LF}}{N_{
m Denm-LF}}$$
 $f_{
m HF} = rac{N_{
m Lepton-HF}}{N_{
m Denm-HF}}$

Complication

- $N_{\rm Lepton-LF}$ and $N_{\rm Lepton-HF}$ are <u>not</u> observables.
- We can only measure $N_{\text{Lepton}} = N_{\text{Lepton-LF}} + N_{\text{Lepton-HF}}$ in data
- For a given N_{Lepton} we don't know if its from LF or HF

Extracting flf and fhf

Numerators

$$f_{
m LF} = \frac{N_{
m Lepton-LF}}{N_{
m Denm-LF}}$$
 $f_{
m HF} = \frac{N_{
m Lepton-HF}}{N_{
m Denm-HF}}$

Complication

- $N_{\rm Lepton-LF}$ and $N_{\rm Lepton-HF}$ are <u>not</u> observables.
- We can only measure $N_{\text{Lepton}} = N_{\text{Lepton-LF}} + N_{\text{Lepton-HF}}$ in data

Numerators

- For a given N_{Lepton} we don't know if its from LF or HF

Solve for fle and fhe in terms of observables.

By measuring
$$\frac{N_{\rm Lepton}}{N_{\rm Denm-LF}}$$
 and $\frac{N_{\rm Lepton}}{N_{\rm Denm-HF}}$ in LF and HF-rich samples

(Details in backup)

Measuring flf and fhf

Light Flavor Extrapolation

Heavy Flavor Extrapolation

Same Sign Control Region

Same Sign di-lepton Events passing the WW signal selection are enriched in W+jet events.

Can use the fake factor procedure to predict the same sign yield.

To predict SS background, Apply f to SS Lepton-Denm pairs.

Same Sign Require Same-Sign Lepton+Denm.
$$N_{\rm Bkg}^{\rm W+Jet} = f \times N_{\rm (Lepton+Denm)}$$

Provides a data-driven closure test of the method.

Same Sign Control Region

Same Sign di-lepton Events passing the WW signal selection are enriched in W+jet events.

Can use the fake factor procedure to predict the same sign yield.

To predict SS background, Apply f to SS Lepton-Denm pairs.

Same Sign Require Same-Sign Lepton+Denm.
$$N_{\rm Bkg}^{\rm W+Jet} = f \times N_{\rm (Lepton+Denm)}$$

Provides a data-driven closure test of the method.

Caveats:

- W+jet component which is not charge symmetric. (eg: W+c)
- Can't be used if your signal is Same Sign! (Z+fake / OS Low Pt)

Same Sign Results

	ee	em	mm
e-fakes (LF)	2.8 ± 1.0	5.5 ± 0.8	-
e-fakes (HF)	0.0 ± 0.1	0.4 ± 0.1	-
m-fakes	-	5.3 ± 2.8	0.9 ± 1.1
non W+jet	3.6 ± 0.7	6.6 ± 0.4	2.4 ± 0.2
Total Prediction	6.4 ± 1.2	17.0 ± 3.6	3.3 ± 1.2
Observed	3	19	6

Subleading Lepton Pt

mT

	ee	em	mm
e-fakes (LF)	3.9 ± 1.4	6.0 ± 2.6	-
e-fakes (HF)	1.4 ± 0.9	2.1 ± 1.3	_
m-fakes	-	24.7 ± 9.5	12.4 ± 6.0
Total Prediction	5.3 ± 1.7	32.9 ± 10.0	12.4 ± 6.0

emu-channel: e Pt > 25 GeV

m Pt > 20 GeV

	ee	em	mm
e-fakes (LF)	3.9 ± 1.4	6.0 ± 2.6	-
e-fakes (HF)	1.4 ± 0.9	2.1 ± 1.3	-
m-fakes	-	24.7 ± 9.5	12.4 ± 6.0
Total Prediction	5.3 ± 1.7	32.9 ± 10.0	12.4 ± 6.0

emu-channel: e Pt > 20 GeV

m Pt > 25 GeV

Heavy-Flavor Electron Fakes

Heavy-Flavor	Opposite Sign	Same Sign
Fraction	0.26 +/- 0.21	_

- Important confirm this using the data. (Potential failure mode in method.)
- Critical for analyses with significant b-bar background.

Results

WW Cross Section Results

Backgrounds	Events
Drell Yan	$50.4 \pm 3.7 \pm 5.6$
Top	$58.6 \pm 2.1 \pm 22.3$
W+Jets	$50.5 \pm 4.8 \pm 14.7$
Other Diboson (MC)	$6.8 \pm 0.4 \pm 0.8$
Total Background	$169.8 \pm 6.4 \pm 27.3$
Observed Events	414

Source	Uncertainty
Luminosity	3.7%
Background	9.6%
Acceptance	7.4%
Systematic	13.1%
Statistical	8.3%

 $\sigma_{WW} = 48.2 \pm 4.0 \text{(stat)} \pm 6.4 \text{(sys)} \pm 1.8 \text{(lumi)pb.}$

NLO Prediction: 46 ± 3 pb

(MCFM with MSTW2008 (including gg))

Hww Results

Backgrounds	Events
Drell Yan	2 ± 4
Тор	3.9 ± 1.9
W+Jets	5 ± 2
Other Diboson (MC)	1.1 ± 0.5
WW	52 ± 7
Total Background	63 ± 9
Observed Events	81
Higgs m(H) 150	40 ± 9

The Future of the Higgs search.

Improvements

Analysis Updates Expected for winter conferences

- Lowering Lepton Pt to increase low m(H) acceptance
- Use multivariate classifier separate WW and Hww

Its a great time to be doing particle physics!

Supporting Material

Not An Electron in ATLAS

Electron Identification

Electron Identification

Lepton Efficiency

Lepton Efficiency Needed for cross section measurement

$$\sigma_{WW} = \underbrace{\frac{N - N_{Bkg}}{\epsilon \times A \times L}}$$

Obtained from unbiased sample of "True" Leptons

Z-Bosons

Require Tight Lepton + 2nd in Zmass

W-Bosons

Require Large MeT + High Et Lepton Cand. Fit Isolation.

Efficiency

The Future of Electrons

Electron Identification lends itself to multi-variate techniques:

- Large number of discriminating variables
- Many correlations.
- Get pure training/testing samples from data.

Many Advantages

- Gain separation. / Include more variables
- Easily tunable operating points / Output more than y/n decision.

The Future of Electrons

Electron Identification lends itself to multi-variate techniques:

- Large number of discriminating variables
- Many correlations.
- Get pure training/testing samples from data.

Many Advantages

- Gain separation. / Include more variables
- Easily tunable operating points / Output more than y/n decision,

(Simplifies Fake Factor Interpretation:

Defines the space (MVA output) on which the extrapolation is done.)

Leptons

Leptons in Hadron Collisions

A lot of interesting physics signatures involve leptons

Electroweak Measurements.

Top Physics.

Higgs Physics.

Supersymmetry.

Exotics.

Leptonic final states provide rich physics potential

Leptons in Hadron Collisions

A lot of interesting physics signatures involve leptons

Electroweak Measurements.
Top Physics.

Higgs Physics.

Supersymmetry.

Exotics.

Leptonic final states provide rich physics potential

Example: Higgs Physics

- Leptons the signature of EW processes.
- Essential to understanding
 Electro-Weak symmetry breaking

Leptons in ATLAS

ATLAS was designed to do physics with leptons.

- Efficiency to reconstruct Leptons is high.
- Purity of the reconstructed Leptons is high.

Can be used to trigger events.

Several known sources of leptons.

- Provide calibration samples

Leptons in ATLAS

ATLAS was designed to do physics with leptons.

- Efficiency to reconstruct Leptons is high.
- Purity of the reconstructed Leptons is high.

Can be used to trigger events.

Several known sources of leptons.

- Provide calibration samples

Matrix Method

- 1) Define Loose Lepton Definition. (triggerable)
- 2) Select pairs of leptons satisfying Tight or Loose definitions
- 3) Use: lepton efficiency $(r = \frac{N_T^{\text{lepton}}}{N_L^{\text{lepton}}})$ and fake efficiency $(f = \frac{N_T^{\text{jet}}}{N_L^{\text{jet}}})$

Define system of equations

Relate: observed Tight/Loose pairs to true Real/Fake pairs

$$\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{bmatrix} = \begin{bmatrix} r_1 r_2 & r_1 f_2 & f_1 r_2 & f_1 f_2 \\ r_1 (1 - r_2) & r_1 (1 - f_2) & f_1 (1 - r_2) & f_1 (1 - f_2) \\ (1 - r_1) r_2 & (1 - r_1) f_2 & (1 - f_1) r_2 & (1 - f_1) f_2 \\ (1 - r_1) (1 - r_2) & (1 - r_1) (1 - f_2) & (1 - f_1) (1 - r_2) & (1 - f_1) (1 - f_2) \end{bmatrix} \begin{bmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{bmatrix}$$

Invert matrix to determine:

W+jet background from N_{FR} and QCD background from N_{FF}

QCD in Fake Factor Method

Fake factor method double counts the QCD Contribution.

The W+jet background estimation includes a prediction of the QCD multijet background, where both leptons are due to mis-identified jets. The background due to double fakes from QCD is given by

$$N_{\text{QCD Bkg}} = f^2 \times N_{jet-rich+jet-rich}^{QCD}$$
 (8)

However, QCD will also contribute to the W+jet control sample with a rate given by,

$$N_{leptonID+jet-rich}^{QCD} = 2 \times f \times N_{jet-rich+jet-rich}^{QCD}$$
(9)

with the factor of two being due to the fact that either of the jets in the dijet event can be mis-identified as a lepton. Scaling the QCD component of the W+jet control sample by the fake factor gives,

$$f \times N_{leptonID+jet-rich}^{QCD} = 2 \times f^2 \times N_{jet-rich+jet-rich}^{QCD} = 2 \times N_{QCDBkg}.$$
 (10)

Electron Fake Factors

Figure 14: Measured electron fake factors as a function of electron E_T , before (left) and after (right) the electroweak subtraction. The fake factors shown in red were measured using the EF_g11_etcut trigger, while those in black use a combination of the EF_g20_etcut and EF_e20_medium triggers.

Sample Dependence

Figure 18: Left: the electron fake factor as a function of electron p_T from di-jet MC sample and W inclusive MC sample. Right: the muon fake factor as a function of muon p_T . Uncertainty shows the MC statistics of samples.

Control Sample Definition

More exclusive:

- "Nearer" to signal region (smaller extrapolation)
- More True lepton contamination.
- Smaller control sample

Less exclusive:

- "Further" from signal region (larger extrapolation)
- Less True lepton contamination.
- Larger control sample

Control Sample Definition

Freedom in definition of the control sample.

Trade off between statistical and systematic uncertainties.

Advantage of the Fake Factor Method is this freedom.

"Denominator" vs Reconstructed Jets

Denominator more exclusive:

- "Nearer" to signal region (smaller extrapolation)
- Smaller Systematics.

Control Sample Definition

Freedom in definition of the control sample.

Trade off between statistical and systematic uncertainties:

Advantage of the Fake Factor Method is this freedom.

"Denominator" vs Reconstructed Jets

Denominator more exclusive:

- "Nearer" to signal region (smaller extrapolation)
- Smaller Systematics.

	Lepton Definition	Denominator Definition		
Electrons:	Reconstructed Electron	Reconstructed Electron Fail Medium + Loose Isolation		
	Pass Tight + Isolation.	Fail Medium + Loose Isolation		
Muons:	Reconstructed Muon	Reconstructed Muon		
	Tight D0/Z0 + Isolation	Loose D0/Z0 + Interm. Isolation		

Fake Factor Method in Equations

"Naive" Method

What we would like to do:

Number of Lepton+Jet events passing event selection

$$F_{\text{Lepton}} \times N_{(\text{Lepton + Jet})}$$

Fake Rate: How often a Jet is identified as a Lepton

"Naive" Method

What we would like to do:

Number of Lepton+Jet events passing event selection

$$F_{\text{Lepton}} \times N_{(\text{Lepton + Jet})}$$

Fake Rate: How often a Jet is identified as a Lepton

Problems:

- A lot of different kinds of Jets, with different $F_{
 m Lepton}$
- Jets are not "like" Leptons. F_{Lepton} far extrapolation.
- Multiple energy scales. (100 GeV jets can fake 20 GeV electrons.)

"Naive" Method

What we would like to do:

Number of Lepton+Jet events passing event selection

$$F_{\text{Lepton}} \times N_{(\text{Lepton + Jet})}$$

Fake Rate: How often a Jet is identified as a Lepton

Problems:

- A lot of different kinds of Jets, with different $F_{
 m Lepton}$
- Jets are not "like" Leptons. F_{Lepton} far extrapolation.
- Multiple energy scales. (100 GeV jets can fake 20 GeV electrons.)

Flepton and, its extrapolation, would have large systematics.

More realistically,

$$\sum_{\text{Jet } E_T, \cdots} F_{\text{Lepton}}^{ij}(q'/g, \cdots) \times N_{(\text{Lepton+Jet})}^{j}$$

More realistically,

$$\sum_{\text{Jet } E_T, \cdots} F_{\text{Lepton}}^{ij}(q'/g, \cdots) \times N_{(\text{Lepton+Jet})}^{j}$$

Use an alternative, Jet-enriched, Lepton definition to do the extrapolation. ("Denominator" Objects)

Jet to Denominator

$$\sum_{\text{Jet }E_T,\cdots} \frac{F_{\text{Lepton}}^{ij}(q'/g,\cdots)}{F_{\text{Denm}}^{ij}(q'/g,\cdots)} F_{\text{Denm}}^{ij}(q'/g,\cdots) \times N_{(\text{Lepton+Jet})}^{j}$$

More realistically,

$$\sum_{\text{Jet } E_T, \cdots} F_{\text{Lepton}}^{ij}(q'/g, \cdots) \times N_{(\text{Lepton+Jet})}^{j}$$

Use an alternative, Jet-enriched, Lepton definition to do the extrapolation. ("Denominator" Objects)

Jet to Denominator

$$\sum_{\text{Jet }E_T,\cdots} \frac{F_{\text{Lepton}}^{ij}(q'/g,\cdots)}{F_{\text{Denm}}^{ij}(q'/g,\cdots)} F_{\text{Denm}}^{ij}(q'/g,\cdots) \times N_{(\text{Lepton+Jet})}^{j}$$

Assumption: We assume we can define the Denominator such that:

$$F_{\mathrm{Lepton}}^{ij}(q'/g,\cdots) = f \times F_{\mathrm{Denm}}^{ij}(q'/g,\cdots)$$

ie: Assume all the Fake Rate variation due to the underlying jet-physics, is the same for Leptons and Denominators, up to a numerical constant.

This is not quite right, we assign systematics to cover this approximation.

Taking the assumption,

$$\sum_{\text{Jet } E_{T}, \dots} \frac{f \times F_{\text{Denm}}^{ij}(q'/g, \dots)}{F_{\text{Denm}}^{ij}(q'/g, \dots)} F_{\text{Denm}}^{ij}(q'/g, \dots) \times N_{\text{(Lepton+Jet)}}^{j}$$

or,

$$f \times \sum_{\text{Jet } E_T, \dots} F_{\text{Denm}}^{ij}(q'/g, \dots) \times N_{(\text{Lepton+Jet})}^{j}$$

Taking the assumption,

$$\sum_{\text{Jet } E_{T,\cdots}} \frac{f \times F_{\text{Denm}}^{ij}(q'/g,\cdots)}{F_{\text{Denm}}^{ij}(q'/g,\cdots)} F_{\text{Denm}}^{ij}(q'/g,\cdots) \times N_{\text{(Lepton+Jet)}}^{j}$$

or,

$$f \times \sum_{\text{Jet } E_T, \cdots} F_{\text{Denm}}^{ij}(q'/g, \cdots) \times N_{(\text{Lepton+Jet})}^{j}$$

This term is an observable.

$$= f \times N_{(\text{Lepton+Denm})}$$

Conceptually

"Naive Method"

Fake Factor Method

Measuring Extrapolation Factor

Can measure f in a data using a jet control sample.

$$\frac{N_{\text{Lepton}}}{N_{\text{Denm}}} = \frac{\sum\limits_{\text{Jet }E_{T},\cdots}F_{\text{Lepton}}^{ij}\times N_{Jet}^{j}}{\sum\limits_{\text{Jet }E_{T},\cdots}F_{\text{Denm}}^{ij}\times N_{Jet}^{j}} = \frac{\sum\limits_{\text{Jet }E_{T},\cdots}f\times F_{\text{Denm}}^{ij}\times N_{Jet}^{j}}{\sum\limits_{\text{Jet }E_{T},\cdots}F_{\text{Denm}}^{ij}\times N_{Jet}^{j}} = f$$

Ratio of Leptons to Denominators, in jet sample, measures f

Including Heavy Flavor

Sample Dependence: Muons

For muons situation is simpler.

Nearly all high pT "fake" muons are from heavy flavor.

Both the di-jet and the W+jet control samples.

Heavy flavor already included in fake factor procedure for muons

Calculating f(lf) and f(hf)

In a light flavor enriched sample, we can measure:

$$f = \frac{n}{d_{lf}} = \frac{n_{lf} + n_{hf}}{d_{lf}} = f_{lf} + \epsilon_{hf} \times f$$

$$f^{c} = \frac{n}{d_{hf}} = \frac{n_{lf} + n_{hf}}{d_{hf}} = f_{hf} + (1 - \epsilon_{hf}) \times f^{c}$$

$$f = f_{lf} + \frac{d_{hf}}{d_{lf}} \times f_{hf}$$

Calculating f(lf) and f(hf)

In a light flavor enriched sample, we can measure:

$$f = \frac{n}{d_{lf}} = \frac{n_{lf} + n_{hf}}{d_{lf}} = f_{lf} + \epsilon_{hf} \times f$$

$$f^{c} = \frac{n}{d_{hf}} = \frac{n_{lf} + n_{hf}}{d_{hf}} = f_{hf} + (1 - \epsilon_{hf}) \times f^{c}$$

$$f = f_{lf} + \frac{d_{hf}}{d_{lf}} \times f_{hf}$$

Repeat in heavy flavor enriched sample:

$$f^{tag} = f_{hf} + \frac{d_{lf}^{tag}}{d_{hf}^{tag}} \times f_{hf}$$

Calculating f(lf) and f(hf)

In a light flavor enriched sample, we can measure:

$$f = \frac{n}{d_{lf}} = \frac{n_{lf} + n_{hf}}{d_{lf}} = f_{lf} + \epsilon_{hf} \times f$$

$$f^{c} = \frac{n}{d_{hf}} = \frac{n_{lf} + n_{hf}}{d_{hf}} = f_{hf} + (1 - \epsilon_{hf}) \times f^{c}$$

System of equations in terms of **observables** that can be solved to extract f(lf) and f(hf)

$$f = f_{lf} + \frac{d_{hf}}{d_{lf}} \times f_{hf}$$

riched sample:

$$f^{tag} = f_{hf} + \frac{d_{lf}^{tag}}{d_{hf}^{tag}} \times f_{hf}$$

(see backup for details)

Search for Higgs in H->WW-lvlv

Limit Setting

Profile Likelihood / CLs / Asymptotic to set limits

$$\mathcal{L}(\mu,\theta) = \prod_{\ell=ee,\mu\mu,e\mu} \prod_{j=0,1} \text{Poisson}(N_{\ell j}^{SR}|\mu s_{\ell j} + \alpha_{\ell,j}^{WW} \dot{b}_{e\mu,j}^{WW} + \delta_{j}^{1} \alpha_{\ell,j}^{top} \dot{b}_{e\mu,j}^{top} + \sum_{k} b_{\ell jk})$$

$$\text{Poisson}(N_{\ell j}^{WW}|\mu s_{\ell j} + \beta_{\ell,j}^{WW} \dot{b}_{e\mu,j}^{WW} + \delta_{j}^{1} \beta_{\ell,j}^{top} \dot{b}_{e\mu,j}^{top} + \sum_{k} b_{\ell jk})$$

$$\text{Poisson}(N_{\ell j}^{top}|\mu s_{\ell j} + \delta_{j}^{1} \dot{b}_{e\mu,j}^{top} + \sum_{k} b_{\ell jk})$$

$$\prod_{\theta} \text{Gaussian}(\theta|0,1)$$

$$\text{Signal}$$

Acceptance Systematics

Process	jet bin	Scale	PDF	MC	Total
\overline{WW}	0 jet	4%	3%	7%	9%
	1 jet	5%	3%	10%	12%
$t \overline{t}$	0 jet	9%	3%	8%	12%
	1 jet	4%	3%	8%	9%
$gg \to H$	0 jet	3%	3%	3%	5%
	1 jet	3%	3%	11%	12%

Systematics on A - B

	α_{WW}^{0j}	α_{WW}^{1j}	α_{top}^{1j}	β_{top}^{1j}
Q^2 Scale	2.5%	4%	9%	_
MC Modeling	3.5%	3.5%	4%	_
PDF	3.8%	3.5%	3%	_
Jet E Scale + Resolution	$^{+0.5}_{-0.6}\%$	$^{+2.3}_{-1}\%$	$^{-35}\%$ $^{+32}$ $^{-23}\%$ $^{+23}$	$^{-36}\%$ $^{+32}$ $^{-19}\%$ $^{+20}$
b-tagging Efficiency	-	_	$-2\overline{3}\%$	$^{-19}_{+20}\%$
MC Statistics	4.3%	12.9%	6%	

Top Background Estimation

Top in the 0-jet analysis

$$N_{\rm Top}^{\rm Bkg}(0\text{-jet}) = N_{\rm Top}^{Data} \times {\rm SF} \times \frac{N_{\rm Top}^{\rm MC}(0\text{-jet})}{N_{\rm Top}^{\rm MC}}$$

SF - scale factor from tag sample

After jet veto Top Estimate

$$65 \pm 8(stat) \pm 20(syst)$$

Top in 1-jet analysis is normalized to data using control region

Top Control

Reverse b-tag after $Z \rightarrow \tau\tau$ veto in 1-jet analysis

	Тор	non-Top	Prediction	Observed
ee	34 ± 8	1 ± 1	35 ± 9	32
em	163 ± 45	7 ± 2	170 ± 50	153
mm	63 ± 20	1 ± 1	64 ± 20	64

1-jet Analysis

Dominated by top After 1-jet Selection.

Reduce Top Contribution:

- b-jet veto.
 - CombNN at 70% eff. point
- low $P_T(tot)$

$$\mathbf{p}_{\mathrm{T}}^{\mathrm{tot}} = \mathbf{p}_{\mathrm{T}}^{11} + \mathbf{p}_{\mathrm{T}}^{12} + \mathbf{p}_{\mathrm{T}}^{\mathrm{J}} + \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}$$

Reduce Z+jet by $Z \rightarrow \tau \tau$ veto

After 1-jet Requirement

 $|m_{\tau\tau} - m_Z| < 25$ GeV, using the collinear approximation

Assume MeT due to neutrinos in direction of visible decay products.

1-jet Analysis

After $Z \rightarrow \tau \tau$ veto WW and Top Dominate.

Cut on m_{\parallel} , $\Delta \phi_{\parallel}$, and m_{\perp} to separate Hww from WW and Top Analysis divided in to "low"/"high" higgs mass regions

1-jet Analysis

Entries / 10 GeV

$m_{\rm H} < 170$

- mll < 50 GeV
- $-\Delta\phi 11 < 1.3$
- $-0.75 \times mH < mT < mH$

$170 < m_H < 220$

- $m_{\parallel} < 65 \text{ GeV}$
- $-\Delta\phi_{\rm ll}$ < 1.8
- $-0.75 \text{ x } m_{\text{H}} < m_{\text{T}} < m_{\text{H}}$

$m_{\rm H} > 220$

- $-50 < m_{\parallel} < 180 \text{ GeV}$
- $-0.6 \text{ x m}_{H} < m_{T} < m_{H}$

After $\Delta \phi_{\parallel}$ w/ low mass selection

Background Estimation

Same DY, Top, and W+Jet background estimated as in WW cross section measurement

WW MC prediction is normalized to data using WW control region

WW Control Region

- after PT 11
- mll > 80 GeV (Low m(H))
- $mll < 50 \text{ GeV} \parallel 180 \text{ GeV} < mll$ (High m(H))

<u>0-jet</u>

	WW	non-WW	Prediction	Observed
ee	27 ± 4	10 ± 5	37 ± 8	52
em	150 ± 20	34 ± 12	200 ± 40	184
mm	45 ± 6	18 ± 6	63 ± 10	60

